Bifurcations in an epidemic model with constant removal rate of the infectives
نویسندگان
چکیده
An epidemic model with a constant removal rate of infective individuals is proposed to understand the effect of limited resources for treatment of infectives on the disease spread. It is found that it is unnecessary to take such a large treatment capacity that endemic equilibria disappear to eradicate the disease. It is shown that the outcome of disease spread may depend on the position of the initial states for certain range of parameters. It is also shown that the model undergoes a sequence of bifurcations including saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation. 2003 Elsevier Inc. All rights reserved.
منابع مشابه
Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...
متن کاملExtrapolation Method for Numerical Solution of a Model for Endemic Infectious Diseases
Introduction Many infectious diseases are endemic in a population. In other words they present for several years. Suppose that the population size is constant and the population is uniform. In the SIR model the population is divided into three disjoint classes which change with time t and let , and be the fractions of the population that susceptible, infectious and removed, respectively. This...
متن کاملFormation of spatial patterns in epidemic model with constant removal rate of the infectives
Results are reported concerning the formation of spatial patterns in the two-species ratiodependent predator-prey model driven by spatial colored-noise. The results show that there is a critical value with respect to the intensity of spatial noise for this system when the parameters are in the Turing space, above which the regular spatial patterns appear in two dimensions, but under which there...
متن کاملAn epidemic model for the transmission dynamics of HIV/AIDS with different clinical stages
In this paper, a five–dimensional mathematical model is proposed for the transmission dynamics of HIV/AIDS within a population of varying size. In writing the model, we have divided the population under consideration into five sub classes of susceptible, infective, pre-AIDS, AIDS related complex and that of AIDS patients. The model has two non- negative equilibria namely, a disease free and the...
متن کاملStability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function
In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...
متن کامل